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Vortical flow, a flow with finite vorticity, is important both in
laminar1 and in turbulent2 mixing of two highly viscous fluids.3

An outstanding issue in a variety of microfluidic operations4,5 is
the efficient mixing of liquid-phase chemical species. Due to the
small length scales, turbulent mixing, which is extensively utilized
in larger scale flows, cannot be achieved, and new schemes must
be developed. Miniaturization of fluid devices increases the
importance of interfacial quasi-two-dimensional flow as compared
to large scale bulk flow. The reduced dimensionality of the flow
on one hand suppresses the mixing by eliminating the possibilities
of vortex stretching;6 on the other hand, it opens new routes for
mixing via interfacial stresses that drive the flow. Mixing often is
achieved via stirring, and one may characterize the stirring by the
magnitude of the vorticity that is the local angular velocity of
rotation of the fluid. Vortical flow at low Reynolds numbers7,8 is
an important characteristic for the efficient mixing on microfluidic
lab-on-a-chip devices4,5 outside the turbulent regime.

Here we report on the formation of vortical flow in a low
Reynolds number, quasi-two-dimensional Langmuir monolayer at
the air/water interface that might serve as a microfluidic mixer.
For the experiment, we need a quasi-two-dimensional pump to
create the flow, and we need solid objects to obstruct the flow. As
a microfluidic pump we use an IR laser that is focused on the air/
water surface.9 The laser locally heats the monolayer as well as
the water underneath to create a thermal gradient. Surface tension
gradients produced by the temperature-dependent surface tension
γ(T) open a cavitation gas bubble in the liquid-expanded (LE) phase
of the Langmuir monolayer10,11 (Figure 1). The cavitation occurs
when the drop in surface tension due to the heating exceeds the
surface pressure of the LE-phase monolayer. The line tensionλ(T)
between the gaseous phase of the 2D bubble and its LE surroundings
also varies with temperature. If spontaneous symmetry breaking
displaces the bubble from the laser focus, then the LE/gas boundary
closer to the focus will be hotter and the cavitation bubble boundary
exerts a thermocapillary stress that sets the liquid into motion12,13

and amplifies the displacement and the flow. We use the ther-
mocapillary flow of the bubble to pump the LE-phase past giant
folds14-18 (Figure 1, top left) that obstruct the flow like a solid
object. The folds are produced by compressing a 1:1 mixture of a
L-R-dipalmitoylphosphatidylcholine (DPPC) and a 1,2-dipalmitoyl-
sn-glycero-3-{phosphor-L-serine} (DPPS) monolayer beyond its
collapse pressure. Surfactant material irreversibly aggregates into
folds in the water below the monolayer, and a reexpansion of the
monolayer leads to a coexistence of the LE and gas phase with the
folds that cut the LE into disjoined sections.19 Thermocapillary flow
of sufficient strength breaks these folds into two pieces. We then
observe the flow of the monolayer beyond one of the broken ends
of the fold (Figure 1, bottom right). When the flow passes the fold,
we observe a separation of the boundary layer from the folds. The
streamlines are visualized by the tail of the cavitation gas bubble
that follows the flow and creates a contrast to the LE phase in the

fluorescence microscope images (Figure 1, bottom left and right
and videos in the Supporting Information). Instead of clinging to
the folds, the streamlines extend past the fold and bend toward the
fold only after a distance of 100µm.

The result is a vortex of radius≈ 100 µm with streamlines
circling around the center with velocityu. Using polar coordinates
r,ϑ centered at the vortex, we measure the azimuthal velocity
component uϑ of the monolayer around the vortex by following
frame-by-frame characteristic small gas bubbles that are advected
by the flow. The vorticityω ) ∇ × u of such a vortex calculated
from uϑ is depicted as a function of the radiusr measured from the
center of the vortex (Figure 2). The vorticity shows a bipolar
behavior with a positive vorticity forr < R) 50µm and a negative
vorticity farther outside. The order of magnitude of the vorticity is
in the rangeω ≈ 1 s-1. Using the densityF ) 1 g cm-3 and
viscosity η ) 10-3 Nsm-2 of water, we find that the Reynolds
numberRe ) FωR2/η , 1 is very small. The hydrodynamics is
therefore governed by the equations of creeping flow. Since the
viscous stresses associated with the flow are too small to cause
any surface compressionκsηu , 1 (κs is the surface compress-
ibility), the monolayer on top of the air/water interface can be treated
as incompressible.20 There is no advection of vorticity under these
circumstances, and the source of the vorticity must be an effective
torque exerted on the surface. The surface torque is a linear

Figure 1. Top right: Schematics of the experiment producing the vortical
flow. Top left: Detailed schematics of the giant fold. Bottom right:
Fluorescence microscope image of a mixed DPPC-DPPS monolayer with
folds (bright), cavitation bubble (dark) created in the laser focus (cross hair),
and vortical flow behind a fold. Bottom left: Close-up view of a
fluorescence microscope image of a different vortex.
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functional of the vorticity profile at the surface, and we may
deconvolute the torque from the vorticity data via:

whereτ(r) is the surface torque density,T ) ∫ dr τ(r) is the total
torque, andK is the complete elliptic integral of the first kind.21

The torque profile as a function of the radial distance from the
vortex center obtained from the vorticity data via eq 1 is displayed
in Figure 2. We find a total torque of the orderT ) 0.4 × 10-15

Nm, most of which is located at the distanceR ≈ 50 µm, where
the vorticity changes sign. A change of vorticity at the location of
the source of the vortex is expected since the velocity gradient will
point in opposite directions on each side of the torque source. The
magnitude of the torque density (τ ≈ 10 pN) is of comparable
magnitude as the forces required for manipulating the monolayer
with optical tweezers.9 The torque density arises from physical
origins that exclude viscous traction from the subphase and surface
pressure gradients. The physical reason for the torque might be
thermocapillary effects occurring in the region where the hot fluid
from the bubble meets the cold fluid behind the fold. The vorticity
created in this way stretches the LE and gaseous phase in the
azimuthal direction and at the same time thins both phases in the
radial direction. The precise nature of the fold should not matter,
and the use of more stable obstacles such as a solid knife edge
instead of the fold for a controlled mixing seems feasable. For the
mixing to be useful, it is important that the vortical flow propagates
to a certain depth into the bulk phase. We have not measured the
penetration depth; however, the creeping flow equations suggest
that the penetration depth is of the order of the lateral extension of

the vortex.21 The penetration depth therefore is expected to be in
the typical order of magnitude (100µm) of microfluidic channels.
If the vortical flow could be maintained long enough to reach a
radial thinning that would allow the interdiffusion of surfactants at
the surface, then this technique would open a route for the effective
two-dimensional microfluidic mixing at low Reynolds numbers.

In summary, we propose a simple way of achieving two-
dimensional mixing via formation of the vortical flow behind the
folds in a low Reynolds number Langmuir monolayer. The vortical
flow in the quasi 2D system resembles eddies forming behind the
objects in a high Reynolds number flow. The vortex is driven by
a torque of the orderT ) 10-15 Nm. The torque might originate
from the thermocapillary stress between the hot fluid entering the
area via the unblocked side of the fold and the cold water in the
area shadowed by the fold.
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Supporting Information Available: Experimental setup, method,
derivation of eq 1, a real time movie showing the interfacial ther-
mocapillary vortical flow including the thermocapillary pump, the folds,
and the vortex, and a real-time movie with a close-up view of a vortex
(MPG, PDF). This material is available free of charge via the Internet
at http://pubs.acs.org.
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Figure 2. Vorticity (red) of the vortex of Figure 1 (bottom left) as a function
of the radial distance from the vortex center. The blue line is the torque
density deconvoluted from the red data according to eq 1. The total torque
of T ) 0.4 × 10-15 Nm concentrates aroundr ) R ) 50 µm, where the
vorticity changes sign.
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∞
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